mamot.fr is one of the many independent Mastodon servers you can use to participate in the fediverse.
Mamot.fr est un serveur Mastodon francophone, géré par La Quadrature du Net.

Server stats:

3.2K
active users

#geometry

33 posts19 participants1 post today
SusiPlaces of geometry.<br> <br> <br> <a href="https://pixelfed.de/discover/tags/fensterfreitag?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#fensterfreitag</a> <a href="https://pixelfed.de/discover/tags/windowsonfriday?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#windowsonfriday</a> <a href="https://pixelfed.de/discover/tags/windows?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#windows</a> <a href="https://pixelfed.de/discover/tags/building?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#building</a> <a href="https://pixelfed.de/discover/tags/architecture?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#architecture</a> <a href="https://pixelfed.de/discover/tags/architecturephotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#architecturephotography</a> <a href="https://pixelfed.de/discover/tags/abstractinarchitecture?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#abstractinarchitecture</a> <a href="https://pixelfed.de/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.de/discover/tags/bnw?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnw</a> <a href="https://pixelfed.de/discover/tags/bnwphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnwphotography</a>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>unnick</span></a></span> Maybe looks better with the cube visible?</p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/tetrahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tetrahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>unnick</span></a></span> I'm kind of surprised and not surprised about how the tetrahedron turned out. <br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/tetrahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tetrahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>unnick</span></a></span> And here’s the rhombic triacontahedron for the dodecahedron/icosahedron (again without scaling the bars to have constant length).<br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/dodecahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dodecahedron</span></a> <a href="https://mathstodon.xyz/tags/icosahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>icosahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>unnick</span></a></span> This version shows how the cube/octahedron works using a rhombic dodecahedron (without scaling the bars to have constant length).<br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>unnick</span></a></span> <br>I'm not sure that these are related to the Jitterbug transformation. </p><p>This is my recreation of unnick's original cube/octahedron loop. I used the rhombic dodecahedron and rhombic triacontahedron for this and the previous loop. They remind me of tensegrity structures.</p><p>BTW, I made a couple of origami versions of the Jitterbug transformation many years ago. This one <a href="https://foldworks.net/wp-content/uploads/2018/06/jitterbug.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">foldworks.net/wp-content/uploa</span><span class="invisible">ds/2018/06/jitterbug.pdf</span></a> works better than the first version <a href="https://britishorigami.org/academic/davidpetty/origamiemporium/lam_jitterbug.htm" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">britishorigami.org/academic/da</span><span class="invisible">vidpetty/origamiemporium/lam_jitterbug.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3d</span></a> <a href="https://mathstodon.xyz/tags/Jitterbug" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Jitterbug</span></a> <a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>origami</span></a></p>
foldworks<p>I couldn’t resist making this in Geogebra: morphing between a regular icosahedron and a regular dodecahedron.</p><p>h/t <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>unnick</span></a></span> <a href="https://mathstodon.xyz/@unnick@booping.synth.download/114350750053349050" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@unnick@booping</span><span class="invisible">.synth.download/114350750053349050</span></a></p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/icosahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>icosahedron</span></a> <a href="https://mathstodon.xyz/tags/dodecahedron" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dodecahedron</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3d</span></a></p>
ƧƿѦςɛ♏ѦਹѤʞ<p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/units" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>units</span></a> <a href="https://mastodon.social/tags/Planck" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Planck</span></a> <a href="https://mastodon.social/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a></p>
foldworks<p>Floor tiles, Central post office, <a href="https://mathstodon.xyz/tags/Saigon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Saigon</span></a> Central Post Office, Ho Chi Minh City, <a href="https://mathstodon.xyz/tags/Vietnam" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Vietnam</span></a> <a href="https://en.m.wikipedia.org/wiki/Saigon_Central_Post_Office" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.m.wikipedia.org/wiki/Saigon</span><span class="invisible">_Central_Post_Office</span></a><br><a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/tiling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tiling</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/pattern" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pattern</span></a> <a href="https://mathstodon.xyz/tags/architecture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>architecture</span></a></p>
Sean AlexanderStreet photography as geometric graphic design layout.<br> <br> Denver, CO (2022)<br> <br> <a href="https://pixelfed.social/discover/tags/photography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#photography</a> <a href="https://pixelfed.social/discover/tags/streetphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#streetphotography</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.social/discover/tags/graphicdesign?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#graphicdesign</a> <a href="https://pixelfed.social/discover/tags/layout?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#layout</a> <a href="https://pixelfed.social/discover/tags/abstract?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#abstract</a>
Radical Anthropology<p><a href="https://c.im/tags/Crows" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Crows</span></a> very good at <a href="https://c.im/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a>, they can not only distinguish the 🌙 from stars, but choose between distinctive quadrilaterals</p><p><a href="https://www.earth.com/news/crows-can-recognize-geometric-patterns-in-shapes/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">earth.com/news/crows-can-recog</span><span class="invisible">nize-geometric-patterns-in-shapes/</span></a></p>
Hacker News<p>Monsky's Theorem</p><p><a href="https://mathmondays.com/monskys-theorem" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">mathmondays.com/monskys-theorem</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/MonskysTheorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MonskysTheorem</span></a> <a href="https://mastodon.social/tags/MathNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathNews</span></a> <a href="https://mastodon.social/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mastodon.social/tags/TheoremDiscussion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TheoremDiscussion</span></a> <a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HackerNews</span></a></p>
FotoapparatCheap wood composite material. 2025<br> <a href="https://pixelfed.social/discover/tags/filmphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#filmphotography</a> <a href="https://pixelfed.social/discover/tags/blackandwhite?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#blackandwhite</a> <a href="https://pixelfed.social/discover/tags/abstract?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#abstract</a> <a href="https://pixelfed.social/discover/tags/collage?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#collage</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a>
SusiView <br> <br> <br> <a href="https://pixelfed.de/discover/tags/architecture?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#architecture</a> <a href="https://pixelfed.de/discover/tags/architecturephotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#architecturephotography</a> <a href="https://pixelfed.de/discover/tags/abstractinarchitecture?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#abstractinarchitecture</a> <a href="https://pixelfed.de/discover/tags/abstract?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#abstract</a> <a href="https://pixelfed.de/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.de/discover/tags/clouds?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#clouds</a> <a href="https://pixelfed.de/discover/tags/bnw?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnw</a> <a href="https://pixelfed.de/discover/tags/bnwphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnwphotography</a>
Sonja P. PanuskaPulling the lines<br> <a href="https://pixelfed.social/discover/tags/farming?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#farming</a> <a href="https://pixelfed.social/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.social/discover/tags/simplicity?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#simplicity</a>
Good News Community<p>🧠 **Crows Can Do Geometry!** 🧠</p><p>A new study reveals that carrion crows can recognize geometric patterns like right angles and symmetry—skills once thought unique to humans. These clever birds are reshaping our understanding of animal intelligence.</p><p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/goodnews" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>goodnews</span></a></span> </p><p><a href="https://mastodon.cosmicnation.co/tags/GoodNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GoodNews</span></a> <a href="https://mastodon.cosmicnation.co/tags/AnimalIntelligence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AnimalIntelligence</span></a> <a href="https://mastodon.cosmicnation.co/tags/Crows" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Crows</span></a> <a href="https://mastodon.cosmicnation.co/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a> <a href="https://mastodon.cosmicnation.co/tags/CognitiveScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CognitiveScience</span></a><br><a href="https://www.npr.org/2025/04/12/nx-s1-5359438/a-crows-math-skills-include-geometry" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">npr.org/2025/04/12/nx-s1-53594</span><span class="invisible">38/a-crows-math-skills-include-geometry</span></a></p>
SusiPartly cloudy.<br> <br> <br> <a href="https://pixelfed.de/discover/tags/fensterfreitag?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#fensterfreitag</a> <a href="https://pixelfed.de/discover/tags/windowsonfriday?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#windowsonfriday</a> <a href="https://pixelfed.de/discover/tags/windows?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#windows</a> <a href="https://pixelfed.de/discover/tags/reflections?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#reflections</a> <a href="https://pixelfed.de/discover/tags/building?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#building</a> <a href="https://pixelfed.de/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometry</a> <a href="https://pixelfed.de/discover/tags/architecture?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#architecture</a> <a href="https://pixelfed.de/discover/tags/architecturephotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#architecturephotography</a> <a href="https://pixelfed.de/discover/tags/abstractinarchtecture?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#abstractinarchtecture</a> <a href="https://pixelfed.de/discover/tags/bnw?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnw</a> <a href="https://pixelfed.de/discover/tags/bnwphotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#bnwphotography</a> <a href="https://pixelfed.de/discover/tags/perspective?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#perspective</a>
ƧƿѦςɛ♏ѦਹѤʞ<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@DaniLaura" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>DaniLaura</span></a></span> <br>You may also enjoy:<br><a href="https://www.youtube.com/watch?v=cCXRUHUgvLI" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">youtube.com/watch?v=cCXRUHUgvLI</span><span class="invisible"></span></a><br><a href="https://mastodon.social/tags/Mathologer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathologer</span></a> <a href="https://mastodon.social/tags/BurkardPolster" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BurkardPolster</span></a> <a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/GoldenRatio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GoldenRatio</span></a></p>
Dani Laura (they/she/he)<p>I have found an interesting geometric fact: suppose you have a hexagon of side 1 and duplicate and enlarge it by the golden ratio 𝜑; the distance from one vertex of the unit hexagon to a vertex of the bigger hexagon 60° apart is √2. Furthermore, if another hexagon reduced by 𝜑 is drawn inside, the distance from one vertex of the unit hexagon to a vertex of the smaller hexagon 120° apart is also √2 [first figure].<br>This boils down to the fact that a triangle of sides 1, √2, and 𝜑 has an angle of 60° opposite to side √2. That triangle is very remarkable as it contains the three more relevant algebraic geometric constants: √2, √3/2 (altitude to the bigger side) and 𝜑 [second figure]. Of course this can be also used to construct 𝜑 from a square and a triangle (I bet this is known). In the follow-up some artistic designs exploiting those facts.<br><a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/triangle" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>triangle</span></a> <a href="https://mathstodon.xyz/tags/GoldenRatio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GoldenRatio</span></a></p>
Karen Campe<p>New blog post! "Go For Geometry! Episode 6: Quadrilaterals"<br>Using technology (all platforms) to make sense of this family of shapes. <br><a href="https://mathstodon.xyz/tags/MTBoS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MTBoS</span></a> <a href="https://mathstodon.xyz/tags/iTeachMath" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>iTeachMath</span></a> <a href="https://mathstodon.xyz/tags/T3Learns" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>T3Learns</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geometry</span></a><br><a href="https://mathstodon.xyz/tags/ClassroomMath" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ClassroomMath</span></a> <a href="https://mathstodon.xyz/tags/MathEd" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathEd</span></a> <a href="https://mathstodon.xyz/tags/MathsEdChat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathsEdChat</span></a> </p><p><a href="https://karendcampe.wordpress.com/2025/04/17/go-for-geometry-6/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">karendcampe.wordpress.com/2025</span><span class="invisible">/04/17/go-for-geometry-6/</span></a></p>